Computer Graphics

3 - Transformations

Yoonsang Lee
Hanyang University

Spring 2023

Outline

- 2D Transformations
- Scaling, Rotation, Shearing, Reflection
- Translation
- Classes of Transformations
- Composition of Transformations \& Homogeneous Coordinates
- Two Types of 3D Cartesian Coordinate System
- 3D Affine Transformations

2D Transformations

What is Transformation?

- Geometric Transformation
- The process of changing the position, orientation, size, or shape of a geometric object using mathematical operations. \rightarrow "Moving a set of points"
- Essential in computer graphics because it enables the creation of complex scenes and animations.
- Examples:

* This image is from the slides of Prof. Roger D. Eastman (University of Maryland):

Transformation

- "Moving a set of points"
- Transformation T maps any input vector v in the vector space S to $T(v)$.

$$
S \rightarrow\{T(\mathbf{v}) \mid \mathbf{v} \in S\}
$$

Linear Transformation

- One way to define a transformation is by matrix multiplication:

$$
T(\mathbf{v})=M \mathbf{v}
$$

- This is called a linear transformation because a matrix multiplication represents a linear mapping.

$$
\begin{gathered}
T(a \mathbf{u}+\mathbf{v})=a T(\mathbf{u})+T(\mathbf{v}) \\
\mathbf{M} \cdot(a \mathbf{u}+\mathbf{v})=a \mathbf{M} \mathbf{u}+\mathbf{M} \mathbf{v}
\end{gathered}
$$

2D Linear Transformations

- 2×2 matrices represent 2 D linear transformations such as:
- uniform scaling
- non-uniform scaling
- rotation
- shearing
- reflection

2D Linear Trans. - Uniform Scaling

- Uniformly shrinks or enlarges both in x and y directions.

2D Linear Trans. - Nonuniform Scaling

- Non-uniformly shrinks or enlarges in x and y directions.

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

2D Linear Trans. - Rotation

2D Linear Trans. - Rotation

- Rotation can be written in matrix multiplication, so it's also a linear transformation.
- Note that positive angle means CCW rotation.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
$$

Numbers in Matrices: Scaling, Rotation

- Let's think about what the numbers in the matrix means.

Canonical basis vectors: unit vectors pointing in the direction of the axes of a Cartesian coordinate system.

Numbers in Matrices: Scaling, Rotation

- Column vectors of a matrix is the basis vectors of the column space (range) of the matrix.
- Column space of a matrix: The span (a set of all possible linear combinations) of its column vectors.

2D Linear Trans. - Reflection

- Reflection can be considered as a special case of non-uniform scale.

2D Linear Trans. - Shearing

- "Push things sideways"

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+a y \\
y
\end{array}\right]
$$

Identity Matrix

- "Doing nothing"

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

[Demo] 2D Linear Transformations

Linear Transformations

https://www.integral-domain.org/lwilliams/Applets/algebra/linearTransformations.php

- Try changing the values of matrix elements.
- Try pressing the transformation buttons.

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

2D Translation

- Translation is the simplest transformation:

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

- Inverse:

$$
T^{-1}(\mathbf{v})=\mathbf{v}-\mathbf{u}
$$

Is translation linear transformation?

- No, because it cannot be represented using a simple matrix multiplication.
- Note that a linear transform always maps the zero vector to the zero vector ($\mathbf{0}=\mathbf{M 0}$ for any \mathbf{M}).
- We can express translation using vector addition:

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

- Combining with linear transformation:

$$
T(\mathbf{v})=M \mathbf{v}+\mathbf{u}
$$

- \rightarrow Affine transformation

Let's check again

- Linear transformation
- Scaling, rotation, reflection, shearing
- Represented as matrix multiplications

$$
T(\mathbf{v})=M \mathbf{v}
$$

- Translation
- Not a linear transformation
- Can be expressed using vector addition

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

- Affine transformation
- Combination of linear transformation and translation

$$
T(\mathbf{v})=M \mathbf{v}+\mathbf{u}
$$

Classes of Transformations

Rigid Transformations

- Preserve distances between all points.
$-\|g(\mathbf{u})-\mathrm{g}(\mathbf{v})\|=\|\mathbf{u}-\mathbf{v}\|, \forall \mathbf{u}, \mathbf{v} \in \mathrm{R}^{3}$ (g: rigid transform map)
- Preserve cross product for all vectors.
$-\mathrm{g}(\mathbf{u}) \times \mathrm{g}(\mathbf{v})=\mathrm{g}(\mathbf{u} \times \mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathrm{R}^{3}$
- Reflections do not satisfy this property.

* The diagram is from the slides of Prof. Frédo Durand and Prof. Barbara Cutler (MIT): Hanyang University CSE4020, Yoonsang Ihttps://dspace.mit.edu/bitstream/handle/1721.1/86191/6-837-fall-2003/contents/lecture-notes/index.htm

Similarity Transformations

- Preserve angles.
- (This diagram indicates rigid transforms also preserve angles.)

Linear Transformations

- Preserve the origin.

Affine Transformations

- Preserve parallel lines.
- Preserve ratios of distance along a line. Affine

Projective Transformations

- Preserve lines.

Projective

Composition of Transformations \& Homogeneous Coordinates

Composition of Transformations

- Move an object by T, then move it more by S:

$$
\mathbf{p} \rightarrow T(\mathbf{p}) \rightarrow S(T(\mathbf{p}))=(S \circ T)(\mathbf{p})
$$

- Composing 2D linear transformations just works by $\mathbf{2 x} 2$ matrix multiplication:

$$
\begin{aligned}
& T(\mathbf{p})=M_{T} \mathbf{p} ; S(\mathbf{p})=M_{S} \mathbf{p} \\
& \quad(S \circ T)(\mathbf{p})=M_{S} M_{T} \mathbf{p}=\left(M_{S} M_{T}\right) \mathbf{p}=M_{S}\left(M_{T} \mathbf{p}\right)
\end{aligned}
$$

Order Matters!

- Note that matrix multiplication is associative, but not commutative.

$$
\begin{aligned}
& (A B) C=A(B C) \\
& A B \neq B A
\end{aligned}
$$

- As a result, the order of transforms is very important.

[Demo] Composition of Linear Transformations

Linear Transformations

https://www.integral-domain.org/lwilliams/Applets/algebra/linearTransformations.php

- Reset the matrix to the identity matrix (by entering 1001).
- Check 'Compose Transformations' button.
- Composites two transforms in different order.

Problems when handling Translation as Vector Addition

- Cannot treat linear transformation (rotation, scale,...) and translation in a consistent manner.
- Composing affine transformations is complicated:

$$
\begin{aligned}
& T(\mathbf{p})=M_{T} \mathbf{p}+\mathbf{u}_{T} \\
& S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S}
\end{aligned}
$$

$$
(S \circ T)(\mathbf{p})=M_{S}\left(M_{T} \mathbf{p}+\mathbf{u}_{T}\right)+\mathbf{u}_{S}
$$

$$
=\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right)
$$

- We need a cleaner way!
- \rightarrow Homogeneous coordinates

Homogeneous Coordinates

- Key idea: Represent 2D points in 3D coordinate space.
- Extra component w for vectors, extra row/column for matrices.
- For points, always $w=1$
$-2 D$ point $[x, y]^{T} \rightarrow[x, y, 1]^{T}$.
- 2 D linear transformations are represented as:

$$
\left[\begin{array}{lll}
a & b & 0 \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{c}
a x+b y \\
c x+d y \\
1
\end{array}\right]
$$

Homogeneous Coordinates

- 2D translations are represented as:

$$
\left[\begin{array}{lll}
1 & 0 & t \\
0 & 1 & t \\
s & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t \\
y+s \\
1
\end{array}\right]
$$

- 2D affine transformations are represented as:

Homogeneous Coordinates

- Composing affine transformations just works by 3x3 matrix multiplication.

$$
\begin{gathered}
T(\mathbf{p})=M_{T} \mathbf{p}+\mathbf{u}_{T} \\
S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S} \\
T(\mathbf{p})=\left[\begin{array}{cc}
M_{T}^{2 \times 2} & \mathbf{u}_{T}^{2 \times 1} \\
0 & 1
\end{array}\right] \quad S(\mathbf{p})=\left[\begin{array}{cc}
M_{S}^{2 \times 2} & \mathbf{u}_{S}^{2 \times 7} \\
0 & 1
\end{array}\right]
\end{gathered}
$$

(in block matrix representation)

Homogeneous Coordinates

- Composing affine transformations just works by 3x3 matrix multiplication.

$$
\begin{gathered}
(S \circ T)(\mathbf{p})=\left[\begin{array}{cc}
M_{S}^{2 \times 2} & \mathbf{u}_{S}^{2 \times 1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
M_{T}^{2 \times 2} & \mathbf{u}_{T}^{2 \times 1} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
2 \times 1 \\
1
\end{array}\right] \\
=\left[\begin{array}{c}
\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right) \\
1
\end{array}\right]
\end{gathered}
$$

- The result is the same, but much cleaner.

$$
\begin{aligned}
-\mathrm{cf.}(S \circ T)(\mathbf{p}) & =M_{S}\left(M_{T} \mathbf{p}+\mathbf{u}_{T}\right)+\mathbf{u}_{S} \\
& =\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right)
\end{aligned}
$$

[Demo] Composition of Affine Transformations in Homogeneous Coordinates

Transformation demo
An interactive demo for experimenting with 2D transformation matrix composition.

+ Translate + Scale + Rotate + Shear Reset $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

https://observablehq.com/@esperanc/transformation-demo
- Add translation and linear transforms in various orders with ' + ' buttons.
- Drag the slider to see the matrix value change and the shape transform.
- Note that the last transform added is the first applied transform.

Summary: Homogeneous Coordinates in 2D

- Use ($\mathbf{x}, \mathbf{y}, \mathbf{1})^{\mathbf{T}}$ instead of $(\mathrm{x}, \mathrm{y})^{\mathrm{T}}$ for 2D points
- Use $\mathbf{3 x} \mathbf{3}$ matrices instead of 2×2 matrices for 2D linear transformations
- Use $\mathbf{3 x} \mathbf{3}$ matrices instead of vector additions for 2D translations
- \rightarrow We can treat linear transformations and translations in a consistent manner!

Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Two Types of 3D Cartesian Coordinate System

Now, Let's go to the 3D world!

- Coordinate system (좌표계)
- Cartesian coordinate system (직교좌표계)

Right-Handed and Left-Handed Coordinate Systems

What we're using
Left-handed
Positive rotation
direction
Used in...
counterclockwise about the axis of
rotanded
Cartesian Coordinates

3D Affine Transformations

Point Representations in Cartesian Homogeneous Coordinate System

	Cartesian coordinate system	Homogeneous coordinate system
A 2D point is represented as...	$\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]$	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]$
A 3D point is represented as...	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z}\end{array}\right]$	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$

Review of Linear Transformations in 2D

- Linear transformations in 2D can be represented as matrix multiplication of ...
$\mathbf{2 \times 2}$ matrix
(in Cartesian coordinates)
$\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]$
or
3x3 matrix
(in homogeneous coordinates)

$$
\left[\begin{array}{ccc}
m_{11} & m_{12} & 0 \\
m_{21} & m_{22} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

Linear Transformations in 3D

- Linear transformations in 3D can be represented as matrix multiplication of ...

3x3 matrix or
4x4 matrix
(in homogeneous coordinates)

$\left[\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z}\end{array}\right]\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & 0 \\ m_{21} & m_{22} & m_{23} & 0 \\ m_{31} & m_{32} & m_{33} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$

Linear Transformations in 3D

Scale:

$$
\mathbf{S}_{\mathbf{s}}=\left[\begin{array}{ccc}
\mathbf{S}_{x} & 0 & 0 \\
0 & \mathbf{S}_{y} & 0 \\
0 & 0 & \mathbf{S}_{z}
\end{array}\right] \quad \mathbf{S}_{\mathbf{s}}=\left[\begin{array}{cccc}
\mathbf{S} & \text { 3D-H } \\
0 & 0 & 0 & 0 \\
0 & \mathbf{S}_{y} & 0 & 0 \\
0 & 0 & \mathbf{S}_{z} & 0 \\
1
\end{array}\right]
$$

Shear (in x, based on y, z position):

$$
\mathbf{H}_{x, \mathbf{d}}=\left[\begin{array}{ccc}
1 & \mathbf{d}_{y} & \mathbf{d}_{z} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{H}_{x, \mathbf{d}}=\left[\begin{array}{cccc}
1 & \mathbf{d}_{y} & \mathbf{d}_{z} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

* This slide is from the slides of Prof. Kayvon Fatahalian and Prof. Keenan Crane (CMU):

Linear Transformations in 3D

Rotation about x axis:

$$
\mathbf{R}_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Rotation about y axis:

$\mathbf{R}_{y, \theta}=\left[\begin{array}{ccc}\cos \theta & 0 \square \sin \theta \\ 0 & 1 & 0 \\ \square \sin \theta & 0 & \cos \theta\end{array}\right]$

Rotation about z axis:

[^0]
Review of Translations in 2D

- Translations in 2D can be represented as ...

Vector addition
(in Cartesian coordinates)

$$
\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]
$$

Matrix multiplication of 3×3 matrix
(in homogeneous coordinates)

$$
\left[\begin{array}{lll}
1 & 0 & u_{x} \\
0 & 1 & u_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

Translations in 3D

- Translations in 3D can be represented as ...

Vector addition
(in Cartesian coordinates)

$$
\begin{array}{cc}
\begin{array}{c}
\text { Vector addition } \\
\text { Cartesian coordinates) }
\end{array} & \begin{array}{c}
\text { Matrix multiplication of } \\
\mathbf{4 \times 4} \mathbf{4} \text { matrix } \\
\text { (in homogeneous coordinates) }
\end{array} \\
{\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]+\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & 0 & 0 & u_{x} \\
0 & 1 & 0 & u_{y} \\
0 & 0 & 1 & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]}
\end{array}
$$

Review of Affine Transformations in 2D

- In homogeneous coordinates, 2D affine transformations can be represented as multiplication of $\mathbf{3 x} \mathbf{3}$ matrix:

Affine Transformations in 3D

- In homogeneous coordinates, 3D affine transformations can be represented as multiplication of $\mathbf{4 x} 4$ matrix:

Summary: Affine Transformation

p

$$
\begin{aligned}
& \mathbf{p}_{1}^{\prime} \leftarrow \mathbf{M} \mathbf{p}_{1} \\
& \mathbf{p}_{2}^{\prime} \leftarrow \mathbf{M} \mathbf{p}_{2} \\
& \mathbf{p}_{3}^{\prime} \leftarrow \mathbf{M} \mathbf{p}_{3} \\
& \vdots \\
& \vdots \dot{\mathbf{p}_{\mathrm{N}}^{\prime}} \leftarrow \dot{\mathbf{M}} \dot{\mathbf{p}}_{\mathrm{N}}
\end{aligned}
$$

Summary: Composition of Affine Transformations

$$
\begin{array}{ll}
\mathbf{p}_{1}: \leftarrow \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{1} \\
\mathbf{p}_{2} & \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{2} \\
\mathbf{p}_{3} \leftarrow & \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{3} \\
\vdots & \vdots \\
\vdots & \vdots \\
\mathbf{p}_{\mathrm{N}}^{\prime} \leftarrow & \dot{\mathbf{M}_{2}} \dot{\mathbf{M}}_{1} \dot{\mathbf{p}}_{\mathrm{N}}
\end{array}
$$

Lab Session

- Now, let's start the lab today.

[^0]: * This slide is from the slides of Prof. Kayvon Fatahalian and Prof. Keenan Crane (CMU): http://15462.courses.cs.cmu.edu/fall2015/

